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SUMMARY 

The invest igat ion was  performed i n  t h e  Ames 40- by 80-~oot  Wind Tunnel. 
The aerodynamic cha rac t e r i s t i c s  T;ere determined f o r  an angle-of-attack range 
of -8' t o  24O, f o r  severa l  cont ro l  s e t t i ngs ,  and f o r  dynamic pressures rang- 
ing from about 14 t o  56 psf .  
s t a t i c  margin d(&/dCL ranged from about -0.08 t o  -0.13). For t h e  range of 
cont ro l  s e t t i ngs  examined and a t  a given angle of a t tack ,  t h e  cont ro l  effec- 
t iveness ,  &m/a8f, w a s  equal t o  about -0.006/deg. The maxi" untrimmed 
lif t- to-drag r a t i o  w a s  2.9. A comparison of trimmed aerodynamic character is-  
t i c s  w a s  made between wind-tunnel and f l i g h t  determined r e s u l t s  which show 
good agreement i n  view of t h e  differences i n  t e s t  conditions. 

The vehicle was longi tudinal ly  s t a b l e  ( t h e  

INTRODUCTION 

Many s tudies  have been conducted i n  developing l i f t i n g  body reentry con- 
f igura t ions  capable of gl iding t o  a spec i f ied  recovery s i te  and making a con- 
ventional horizontal  landing. 
ing body. (See re fs .  1 through 4.)  To examine handling q u a l i t i e s  during 
landing of t h i s  type of vehicle a large-scale light-weight (1250 l b )  M-2 w a s  
b u i l t ,  This vehicle (designated t h e  M2-Fl) has been f l i g h t  t e s t e d  a t  NASA's 
Fl ight  Research Center ( r e f .  5 ) .  Tests of t h i s  same vehicle were performed i n  
t h e  Ames 40- by 8 0 - ~ o o t  Wind Tunnel t o  obtain basic  longi tudinal  aerodynamic 
cha rac t e r i s t i c s  and to. produce r e s u l t s  which would allow comparison with those 
obtained from f l i gh t  t e s t s .  The r e s u l t s  of t h i s  wind-tunnel invest igat ion are 
presented he r e  in .  

A representat ive configuration i s  t h e  M-2 l i f t -  

NOTATION 

C vehicle length,  20 f t  

CD drag coef f ic ien t ,  - 
ss 
L CL l i f t  coef f ic ien t ,  - 
qs 

D 

I . 



pitching moment pitching-moment coef f ic ien t ,  
qsc 

. drag force,  l b  

l i f t  force,  l b  

free-stream dynamic pressure, l b / f t2  

body planform area, 138.9 f t2  

free-stream veloci ty ,  knots 

angle of a t tack,  angle of body cone axis with respect t o  t h e  f r e e  stream, 
deg 

elevon def lect ion (see f ig .  2 ) ,  deg 

f l ap  def lect ion (see f i g .  2 ) ,  deg 

The data presented a r e  re fer red  t o  the  wind axis. 

MODEL DESCRIPTION 

Photographs of t h e  model i n s t a l l ed  i n  t h e  t e s t  sect ion of t he  Ames 40- by 
80-~oot  Wind Tunnel a r e  shown i n  f igure  1. Basic model dimensions and geometry 
a r e  given i n  f igure  2. The elevons and f l aps  were interconnected by mechanical 
linkages t o  t h e  control  s t i ck .  The elevon incidence is  expressed as a func- 
t i o n  of  t h e  f l a p  incidence i n  f igure  3. This cont ro l  system, though e n t i r e l y  
adequate f o r  f l ight,  was  f l ex ib l e  enough t o  allow the  elevon surface deflec- 
t i o n  f o r  a given f l a p  posi t ion t o  vary with dynamic pressure and angle o f  
attack. This elevon def lect ion w a s  not measured during the  f l igh t  t e s t s ;  how- 
ever, it w a s  estimated i n  reference 5 t h a t  t he  elevons would deviate a s  much 
as 2 O  t o  30 f rom t h e  no load se t t ing .  The f l a p  pos i t ion  was measured d i r ec t ly  
a t  the  surface and hence w a s  not i n  question during t h e  f l i g h t  t e s t s .  To 
reduce the  control  surface def lect ion during t h e  wind-tunnel t e s t s ,  t he  ele- 
vons and f laps  were posit ioned with locking pins  d i r e c t l y  a t  the  control  sur- 
face. O n l y  t h e  f l a p  incidence w i l l  be referenced i n  t h e  remaining f igures .  

TEST PROCEDURE 

The t e s t s  were performed by se t t i ng  the  control  posi t ion and then varying 
t h e  angle of a t tack  f o r  several  dynamic pressures ranging from 14 t o  56 psf.  
The t e s t  dynamic pressures f o r  t he  d i f fe ren t  f l a p  se t t i ngs  were chosen (based 
on a preliminary estimate) t o  correspond approximately t o  t h e  dynamic pres- 
sures f o r  trimmed l g  f l i g h t .  
except when r e s t r i c t e d  by model s t ruc tu ra l  l imitat ions.  

The angle of a t t ack  was varied from -8' t o  24' 

2 



REDUCTION O F  DATA 

Correct ions 

No tunnel-wall correct ions w e r e  applied t o  t h e  basic  data  presented 
because estimates indicated t h a t  such e f f ec t s  on t h e  data  were well  within t h e  
indicated accuracy. 

The data were corrected f o r  t a r e s  obtained f o r  t h e  unshielded strut t i p s .  
These t a r e s  were obtained without t he  model and hence a r e  subject t o  e r ro r s  
from differences due t o  in te rac t ion  with t h e  model. 
greater  than o r  equal t o  28 p s f l t h e  tare  values used were: drag coef f ic ien t ,  
0.014, and pitching-moment coef f ic ien t ,  -0.009. 

For dynamic pressures 

Accuracy of Measurements 

The various quant i t ies  measured i n  t h e  wind tunnel  were accurate within 
the  following l i m i t s .  The values given include e r ro r  limits due t o  cal ibra-  
t i ons ,  corrections,  and recording methods. 
measurements f o r  each data  point were obtained by averaging 10 samples. 
t h e  accuracy limits l i s t e d  f o r  these items a r e  f o r  t h e  average values. 

The force,  pressure, and moment 
Hence, 

Angle of a t tack  20.3' 

L i f t  +lo l b  

Drag f3 l b  

Pitching moment +300 f t - l b  

Free-stream dynamic pressure k1/2 percent above 20 psf ,  20.1 psf below 
20 psf 

0 Flap and elevon se t t i ngs  k0.5 

The accuracy of t he  f l i g h t  data with which t h e  wind-tunnel t e s t  r e s u l t s  
were compared i s  discussed i n  reference 5 .  

RESULTS AND DISCUSSION 

The basic  aerodynamic cha rac t e r i s t i c s  obtained i n  t h e  wind tunnel  are 
presented i n  f igures  4 and 5 .  
moments (& = 0) w e r e  obtained and a re  compared with t h e  f l i gh t - t e s t  r e s u l t s  
i n  f igure  6. 

lThe t a r e s  were s ign i f i can t ly  g r e a t e r  a t  t h e  lower dynamic pressures 

From these data  the  r e s u l t s  a t  trimmed pi tching 

t e s t e d  because of Reynolds number e f f ec t s .  
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Basic Wind-Tunnel Results 

Figure 4 shows t h e  e f f ec t  of dynamic pressure on t h e  aerodynamic charac- 
t e r i s t i c s  with t h e  control  f l aps  s e t  a t  -18.4'. 
pressure i s  reduced from 28 t o  14 psf ,  there  are s igni f icant  increases i n  the  
pitching-moment coef f ic ien t .  I n  addition, t h e  accuracy i n  the  pitching-moment 
coeff ic ient  i s  reduced as t h e  dynamic pressure i s  reduced. This reduced accu- 
racy resul ted i n  a noticeable increase i n  s c a t t e r  at 14 psf .  

It i s  apparent t h a t  as dynamic 

I n  v i e w  of t h i s  s c a t t e r ,  t h e  control  pos i t ion  data i n  f igure  5 are pre- 
sented only f o r  dynamic pressures greater  than or equal t o  about 28 psf', 
vehicle was longi-kudinally s tab le  and control lable  over t h e  range of l i f t  
coeff ic ients  investigated.  
constant with 
-0.08 t o  -0.13. 
t i n g  could be a t t r i bu ted  reasonably t o  separation of t h e  a i r  flow on t h e  lower 
surface of t he  elevons a t  t h e  low angles of a t tack.  
s e t t i ngs  examined and at  a given angle of a t t ack  it was  determined from the  
r e s u l t s  of f igure  5 t h a t  t h e  control  effectiveness,  dC&sf, w a s  equal t o  
about -0. oo6/deg. 

The 

The s t a t i c  margin, dCm/dCL, which was e s sen t i a l ly  

CL f o r  each control  s e t t i n g  except -18.4: ranged from about 
The nonlinear var ia t ion  evident f o r  t h e  -18.4O control  set- 

For the  range of control  

From the  l i f t - to-drag r a t i o  r e su l t s  presented i n  f igure  5 t he  m a x i m u m  
untrimmed value w a s  about 2.9. 

Comparison of Wind-Tunnel and Fl ight  Results 

The wind-tunnel r e s u l t s  f o r  trimmed conditions were obtained from f igure  
5 and a re  presented i n  f igure  6 along with t h e  f l i gh t - t e s t  resu l t s .  The basic  
coeff ic ients  a re  presented i n  f igure  6(a) ,  t he  required control  posi t ion 
r e su l t s  a re  presented i n  f igure  6 (b ) ,  and t h e  forward veloci ty  r e su l t s  (com- 
puted using the  data of f i g .  6(a)  and the  1250 pound weight of t h e  vehicle) 
a r e  presented i n  f igure  6 ( c ) .  

It i s  apparent t h a t  t h e  l i f t  coeff ic ient  obtained from the  wind-tunnel 
t e s t  r e su l t s  is l i nea r  with angle of a t tack  while t h a t  obtained from t h e  
f l i gh t - t e s t  r e s u l t s  i s  s l i g h t l y  nonlinear. A t  low angles of a t tack  the  l i f t  
coeff ic ients  and slopes agree very well, but a t  t h e  high angles of  a t tack  the  
slope of t he  curve obtained from t h e  f l i g h t - t e s t . r e s u l t s  decreases s l i gh t ly ,  
with the  r e s u l t  t h a t  a t  20' angle of a t tack  t h e  l i f t  coeff ic ient  i s  about 
7 percent l e s s  than t h a t  obtained from the  wind-tunnel tes t  resu l t s .  It i s  
also apparent from f igure  6(a)  t h a t  t h e  m i n i "  drag coeff ic ient  obtained from 
t h e  wind-tunnel tes t  r e s u l t s  is  about 10 percent greater  than t h a t  obtained 
from t h e  f l i gh t - t e s t  r e su l t s .  A t  t he  higher l i f t  coef f ic ien ts  t he  difference 
i n  drag decreased u n t i l  at about t he  m a x i "  tes t  lift coeff ic ient ,  t h e  drag 
coeff ic ients  a r e  about t h e  same. 

Generally, t he  agreement between the  data from f l i g h t  and from the  
wind-tunnel t e s t s  was considered good, especial ly  i n  view of the  following 
differences i n  t es t  conditions: 
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a .  The dynamic pressures i n  t h e  wind tunnel  were from 4 t o  16 psf higher 
than those a t  which t h e  vehicle was flown, f o r  pa r t i cu la r  trimmed l i f t  coef- 
f i c i e n t s .  With t h e  previously noted var ia t ion  of t he  pitching-moment coef- 
f i c i e n t  with dynamic pressure f o r  q C 28 psf and the  inaccuracy of measure- 
ment of t he  pitching-moment coef f ic ien t ,  t he  difference i n  dynamic pressure 
could be expected t o  adversely a f f e c t  t h e  agreement between f l i g h t  and 
wind-tunnel r e s u l t s ,  pa r t i cu la r ly  f o r  l i f t  coef f ic ien ts  above 0.3. 

b. The elevon linkage was f l e x i b l e  during the  f l i g h t  t e s t s  allowing the  
elevon t o  def lec t  under aerodynamic loading. B u t  during t h e  wind-tunnel t e s t s  
t h i s  was prevented by posi t ioning the  elevon with locking pins  d i r e c t l y  a t  t he  
surface. The r e su l t i ng  differences i n  elevon angle a t  a given angle of a t tack  
and forward speed could adversely a f f e c t  t h e  comparison of f l i g h t  and 
wind-tunnel data. 

c. A s  previously mentioned, t he  presence of t he  wind-tunnel model-support 
struts could a f f e c t  t he  wind-tunnel t e s t  r e s u l t s .  This of course could a l s o  
adversely a f f e c t  the  agreement between the  f l i g h t  and wind-tunnel t e s t  r e s u l t s .  

The difference i n  drag coef f ic ien t  due t o  the  possible  presence of grea te r  
turbulence i n  the  wind tunnel  than i n  f l i g h t  was discounted. A n  estimate of 
the  difference i n  drag t h a t  could r e s u l t  from the  vehicle experiencing com- 
p l e t e ly  laminar and completely turbulent  flow indicated t h a t  t he  maxi” drag 
difference could be only about 5 percent. 
the  vehicle could never experience completely laminar flow i n  f l i g h t ,  t h e  drag 
difference i s  believed t o  be much l e s s .  

Since even under i d e a l  conditions 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  Dec. 22, 1965 
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(a) 3/4 f ron t  v i e w .  A-33718 

Figure 1.- M2-Fl l i f t i n g  body f l i g h t  vehicle mounted i n  t h e  Ames 40- by 80 -~oo t  
Wind Tunnel, 
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(b) 3/4 rear view. 

Figure 1.- Concluded. 

A-33717 



5.4 rd'o r3.2' 

5 

x =182 .3 /1 .5  

A l l  dimensions in inches 

T.P. = Tangent point 

Chart A 
Line of tangents for side f lats and 
bottom ell ipses 

Station z 
inches inches 
161.6 
194.6 
201.1 
2026 
2 14. I 
220.5 
227.0 

0 
16.6 
I 9.5 
21.1 
22. I 
22.2 
21.9 

233.5 21. I 
240.0 20.0 

I 
168.6' 

233.5 21. I 
240.0 20.0 

I 
168.6' 

132 168.6 

Figure 2.- Basic model dimensions. 
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Figure 3.- Elevon position as a function of flap setting. 
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Figure 6.- Comparison of trimmed wind-tunnel results (Cm = 0) with flight results.  
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Figure 6. - Concluded. 
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